Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 135(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38178639

RESUMO

AIM: The purpose of this study is to assess the in vitro antimicrobial and anti-biofilm effects of the anti-protozoal agent tafenoquine (TAF) on Enterococcus and elucidate its underlying mode of action. METHODS AND RESULTS: The present work investigated the susceptibility of TAF on 3 type strains and 11 clinical isolates of enterococci. The results indicated that TAF exhibited powerful antimicrobial activity against both of Enterococcus faecalis and Enterococcus faecium with minimum inhibitory and bactericidal concentrations ranging from 8 to 16 µg ml-1. Meanwhile, biofilm inhibition and eradication assays showed that TAF exhibited potent anti-biofilm activity against E. faecalis ATCC 29212 and E. faecium ATCC 19434. Ultra-microscopic observations revealed significant changes in bacterial morphology and structure caused by TAF, particularly for the disruption of plasma membrane. Mechanistic investigations also revealed that TAF altered both membrane permeability and potential while also impacting adenosine triphosphate production as well as reactive oxygen species generation. In addition, no detectable cytotoxicity of TAF on human cells was observed at concentrations near the minimal inhibitory concentration. CONCLUSIONS: In summary, this study confirmed that TAF could effectively inhibit Enterococcus as well as its biofilm formation.


Assuntos
Aminoquinolinas , Anti-Infecciosos , Enterococcus faecium , Humanos , Enterococcus , Antibacterianos/farmacologia , Enterococcus faecalis , Biofilmes , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana
2.
AMB Express ; 13(1): 122, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917339

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) infection poses a severe threat to global public health due to its high mortality. Currently, polymyxins are mainly used for the treatment of Gram-negative bacterial-related infection, while exhibiting limited antibacterial activities against Staphylococcus aureus (S. aureus). However, the combination of antibiotics with antibiotic adjuvants is a feasible strategy for the hard-treated infection and toxicity reducing. We will investigate the antibacterial activity of simeprevir (SIM), which treated for genotype 1 and 4 chronic hepatitis C, combined with polymyxins against MRSA through high-throughput screening technology. In our study, the synergistic antibacterial effect of SIM and polymyxins against S. aureus in vitro was found by checkerboard assay and time-growth curve. The cytotoxicity of SIM combined with polymyxin B sulfate [PB(S)] or polymyxin E (PE) in vitro was evaluated using CCK-8, human RBC hemolysis and scratch assays. In addition, we investigated the eradication of biofilm formation of S. aureus by biofilm inhibition assay and the killing of persister cells. Moreover, we evaluated the therapeutic effect and in vivo toxicity of the combination against MRSA in murine subcutaneous abscess model. Furthermore, it was preliminarily found that SIM significantly enhanced the destruction of MRSA membrane by SYTOX Green and DISC3(5) probes. In summary, these results reveal that the therapy of SIM combined with polymyxins (especially PE) is promising for the treatment of MRSA infection.

3.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 48(6): 868-876, 2023 Jun 28.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-37587072

RESUMO

OBJECTIVES: Staphylococcus epidermidis (S. epidermidis) is a Gram-positive opportunistic pathogen that often causes hospital infections. With the abuse of antibiotics, the resistance of S. epidermidis gradually increases, and drug repurposing has become a research hotspot in the treating of refractory drug-resistant bacterial infections. This study aims to study the antimicrobial and antibiofilm effects of simeprevir, an antiviral hepatitis drug, on S. epidermidis in vitro. METHODS: The micro-dilution assay was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of simeprevir against S. epidermidis. Crystal violet staining assay was used to detect the biofilm inhibitory effect of simeprevir. The antimicrobial activity of simeprevir against S. epidermidis and its biofilm were explored by SYTO9/PI fluorescent staining. The combined effect between simeprevir and gentamycin was assessed by checkerboard assay and was confirmed by time-inhibition assay. RESULTS: Simeprevir showed significant antimicrobial effects against S. epidermidis type strains and clinical isolates with the MIC and MBC at 2-16 µg/mL and 4-32 µg/mL, respectively. The antimicrobial effects of simeprevir were confirmed by SYTO9/PI staining. Simeprevir at MIC could significantly inhibit and break the biofilm on cover slides. Similarly, simeprevir also significantly inhibit the biofilm formation on the surface of urine catheters either in TSB [from (0.700±0.020) to (0.050±0.004)] (t=54.03, P<0.001), or horse serum [from (1.00±0.02) to (0.13±0.01)] (t=82.78, P<0.001). Synergistic antimicrobial effect was found between simeprevir and gentamycin against S. epidermidis with the fractional inhibitory concentration index of 0.5. CONCLUSIONS: Simeprevir shows antimicrobial effect and anti-biofilm activities against S. epidermidis.


Assuntos
Infecção Hospitalar , Simeprevir , Humanos , Antivirais , Antibacterianos/farmacologia , Gentamicinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...